Недавно я наткнулся на интересный вызов — обработать файл размером 12 ГБ, содержащий 1 миллиард строк формата <stationName>;<temperature>\n, с целью агрегировать минимальное, максимальное и среднее значения температуры для каждой станции. В своем блоге Jacky Efendi поделился своим опытом решения этой задачи с использованием Node.js, достигнув ускорения примерно в 30 раз по сравнению с базовой реализацией.
Jacky начал с базового подхода, используя встроенные модули Node.js для построчного чтения файла и хранения агрегированных данных в структуре Map(). Затем он провел профилирование кода с помощью Clinic.js Flame, чтобы определить узкие места производительности. Основное время выполнения занимала функция StringPrototypeSplit, используемая для разделения строк.
Для оптимизации Jacky предложил несколько улучшений:
1. Сокращение вызовов StringPrototypeSplit: уменьшение количества вызовов этой функции для повышения эффективности. 2. Более быстрые преобразования Buffer в числа: оптимизация процесса преобразования данных из буфера в числовые значения. 3. Параллелизация обработки: распределение работы между несколькими потоками или процессами для ускорения обработки больших объемов данных.
Недавно я наткнулся на интересный вызов — обработать файл размером 12 ГБ, содержащий 1 миллиард строк формата <stationName>;<temperature>\n, с целью агрегировать минимальное, максимальное и среднее значения температуры для каждой станции. В своем блоге Jacky Efendi поделился своим опытом решения этой задачи с использованием Node.js, достигнув ускорения примерно в 30 раз по сравнению с базовой реализацией.
Jacky начал с базового подхода, используя встроенные модули Node.js для построчного чтения файла и хранения агрегированных данных в структуре Map(). Затем он провел профилирование кода с помощью Clinic.js Flame, чтобы определить узкие места производительности. Основное время выполнения занимала функция StringPrototypeSplit, используемая для разделения строк.
Для оптимизации Jacky предложил несколько улучшений:
1. Сокращение вызовов StringPrototypeSplit: уменьшение количества вызовов этой функции для повышения эффективности. 2. Более быстрые преобразования Buffer в числа: оптимизация процесса преобразования данных из буфера в числовые значения. 3. Параллелизация обработки: распределение работы между несколькими потоками или процессами для ускорения обработки больших объемов данных.
Telegram auto-delete message, expiring invites, and more
elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.
Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.